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We present new ab initio calculations of  the interaction potential and the 
elastic and inelastic cross sections for He scattering by I2. The electronic 
structure calculations of the interaction potential are based on an extensive 
one-electron basis set (triple zeta plus a d set on each I, an s function plus 
a p set at the 12 bond center, and quadruple zeta plus two p sets on He), a 
two-configuration-SCF orbital set, and a configuration interaction calculation 
based on all single and double excitations out of the two-configuration 
reference space. The calculations are performed at 16He-12 distances for nine 
combinations of I2 vibrational displacement and orientation. A new form of 
analytic representation is presented that is particularly well suited to efficient 
and accurate fitting of  ab initio interaction potentials that include vibrational 
displacements. Scattering calculations are performed by the vibrational close- 
coupling, rotational-infinite-order-sudden approximation with a converged 
vibrational basis. 

Key words: Multireference configuration interaction ca lcula t ions--  Non- 
pairwise additive potential s u r f a c e -  Vibrational-rotational scattering calcu- 
lations 

1. Introduction 

Hall et aI. [1] have recently reported the first measurement of  the energy depen- 
dence of  a vibrational excitation cross section for a collisional system involving 
uncharged species. The system they studied, He-I2, has also been widely studied 
[2] with regard to predissociation of the van der Waals complex and vibrational 
energy transfer in non-energy-selected collisions, although the experiment of Hall 
et al. refers to the ground electronic state, and most previous work refers to I2 
in the B3IIo~ excited electronic state. In the present paper we report a full potential 
energy surface for He-Iz in the ground electronic state, with special emphasis 
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on those properties of the potential energy surface that are expected to have a 
strong effect on the vibrational excitation cross sections measured by Hall et al. 

We have previously reported [3] a pairwise additive (PA) approximation to the 
potential energy surface for He-I2 collisions that was based in part on ab initio 
calculations and in part on theoretical and experimental estimates of the long- 
range forces and the properties of the van der Waals complex. The PA potential 
was used for scattering calculations [4] and it yielded semiquantitative agreement 
with the experimental vibrational excitation cross sections; however, as compared 
to the experimental results, the calculations showed significantly more rotational 
excitation accompanying the vibrationally inelastic events. The discrepancy 
between the theoretical and experimental rotational-vibrational distributions was 
tentatively ascribed to incorrect anisotropy of the PA potential. In the present 
calculation we remove the assumption of pairwise additivity. The present potential 
also improves on the previous one in several other respects: (i) we use a more 
accurate effective core potential to treat the core electrons of I, (ii) we use a more 
extensive and well optimized one-electron basis set of gaussian functions, (iii) 
we use a two-configuration self-consistent-field (SCF) calculation to obtain the 
orbitals for a more complete configuration interaction (CI) treatment of electron 
correlation effects. In particular the present calculations treat electron correlation 
effects in terms of configuration mixing with all single and double excitations 
from an optimized-double-configuration (ODC) [5] reference state, whereas the 
previous calculations used a single-configuration reference and third-order 
M011er-Plesset perturbation theory. Point (iii) is considered particularly important 
because the vibrational excitation cross sections are expected [4, 6] to be par- 
ticularly sensitive to the derivative of the interaction potential with respect to the 
I-I  stretching coordinate and a multi-reference orbital set is required for a correct 
description of the wave function as this coordinate is increased. One might 
consider adding a fourth item to the above list, namely (iv) the present calculations 
are entirely ab initio; we realize however, that this need not lead to improved 
reliability. 

In addition to reporting the new electronic structure calculations, we report an 
analytic representation of the potential energy surface by a new functional form 
that may be useful for non-PA approximations to other atom-diatom potential 
energy surfaces, and we report new dynamics calculations. Comparing the new 
dynamics calculations for the non-PA potential to the previous ones [4] for the 
PA potential [3] provides a test of the PA assumption. One general reason, in 
addition to the specific question mentioned above of rotational inelasticity, for 
quantitatively testing the PA approximation is its great appeal for constructing 
potential surfaces involving polyatomic molecules. Two examples closely related 
to the present study are the use of PA potentials for vibrational excitation of 
polyatomics in collisions with rare gases [7] and the use of PA potentials for 
pentacene-rare gas van der Waals molecules [8]. 

Section 2 discusses the electronic structure calculations, in particular (2.1) the 
choice of effective core potential, (2.2) the multi-reference SCF and CI procedures, 



An ab initio potential energy surface of 12 by He 25 

and (2.3) the choice of gaussian basis set. Section 3 presents the new method for 
the analytical representation of an A-BC interaction potential; in particular we 
present a fitting procedure that exactly reproduces the ab initio calculations at a 
finite number of BC orientation angles and also includes a qualitatively correct 
pairwise interaction when A gets very close to either B or C. Section 4 gives the 
details of the scattering calculations; Section 5 presents the results and discusses 
them. A particularly important point considered in the discussion section is what 
we have learned about the validity of the widely applied [2] PA approximation 
for interaction potentials in this kind of system. Section 6 contains concluding 
remarks. 

2. Ab initio calculations 

2.1. Effective core potential 

Since HeI2 has a very large number of electrons, we replace the core orbitals on 
I by an effective core potential (ECP) as was done in the previous calculations 
[3]. This reduces the number of electrons considered explicitly to 16, thus reducing 
one-electron basis set requirements and the size of the configuration interaction 
expansion substantially. As compared to our previous calculations though, the 
present calculations employ an improved ECP for I. 

The ECP for I that was used in the first set of calculations [3] was determined 
by Kahn et al. [9] and was based upon a Phillips-Kleinman-like pseudo-orbital 

Table 1. Effective core potentials a for I where the parameters are defined by 
UECP =Z5_l d3kr"Jk exp (-a3,,,:r2)+ Y.~=o Z t  =_t IlmElml ~5k= 1 dtkr "tk exp (-o~;kr 2) 

l nlk ark (a.u.) ~k(a.u.) 

3 0 1.0715702 -0.0747621 
1 44.1936028 -30.0811224 
2 12.9367609 -75.3722721 
2 3.1956412 -22.0563758 
2 0.8589806 -1.6979585 

0 0 127.9202670 2.9380036 
1 78.6211465 41.2471267 
2 36.5146237 287.8680095 
2 9.9065681 114.3758506 
2 1.9420086 37.6547714 

1 0 13.0035304 2.2222630 
1 76.0331404 39.4090831 
2 24.1961684 177.4075002 
2 6.4053433 77.9889462 
2 1.5851786 25.7547641 

2 0 40.4278108 7.0524360 
1 28.9084375 33.3041635 
2 15.6268936 186.9453875 
2 4.1442856 71.9688361 
2 0.9377235 9.3630657 

Ref. [13]. 
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transformation [9, 10]. However, Hay et al. [11] have shown that pseudo-orbitals 
determined by this method may have inaccurate tails, leading to ECP's that yield 
too large dissociation energies and too small bond lengths when compared to 
results from corresponding all-electron (AE) calculations. Christiansen et al. [ 12] 
have proposed a better method in which a given pseudo-orbital matches exactly 
the corresponding Hartree-Fock orbital, including the normalization, in the 
valence region. Thus the pseudo-orbitals differ from the Hartree-Fock orbitals 
only in the core region near the nuclei. Using this method, improved ECP's have 
been determined which give good agreement between ECP and AE calculations 
of bond lengths and dissociation energies [12]. Wadt and Hay [13] have used 
such pseudo-orbitals to obtain ECP's for most of the atoms in the periodic table, 
and we use their ECP for I in the present calculations. Relativistic effects are 
included implicitly in this ECP because it is based on orbitals obtained from the 
relativistic Hartree-Fock equations of Cowan and Gritten [14], which include 
"mass-velocity" and "Darwin" terms. This method has proven to be reliable 
when compared to more rigorous methods [15]. In summary the new ECP should 
be more reliable than the previous one since it contains relativistic effects and it 
correctly treats the normalization condition in the valence space. In addition the 
new ECP includes angular momentum projectors for s, p, and d orbitals, whereas 
the previous one included only s and p projectors. Table 1 lists the parameters 
used in the pseudopotential. 

2.2. SCF and CI methods 

The general technique used to calculate the electronic energy is the multi-reference 
configuration interaction method with single and double excitations (MR CISD) 
[16]. In this method we include all configurations that can be constructed by 
single or double excitations from a reference set of configurations, which in the 
present case consists of only the two configurations needed to properly describe 
the dissociation of 12. Thus for I2 the reference space consists of the ground-state 
configuration and the double excitation of 2 electrons from the highest occupied 
% orbital to the lowest unoccupied 0-~ orbital; this is 20-2g + 20 -2 in the valence- 
electron number scheme. The generalizations for linear, C2v, and non-symmetric 

t 2 geometries of Helz are 4o -2 + 5 0-2, 4a 2_~ 3 b~, and 6a + 7 a '~. Having these excited 
configurations in the reference space allows for a more accurate description of 
the I2 stretching motion for all geometries. 

The techniques used for optimizing molecular orbitals for the two-configuration 
reference space are explained elsewhere (multi-configuration self-consistent-field 
method [17]), and these calculations as well as the MR CISD calculations were 
carried out using the COLUMBUS programs [18]. 

2.3. One-electron basis set 

In choosing a one-electron basis set to use in the present calculations, we 
established three criteria which the calculated potential energy surface should 
satisfy and we optimized and enlarged the basis set until these criteria were met. 
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In order of  decreasing importance, the criteria are: (i) The basis set should be 
sufficiently complete that the stretching potential of the isolated I2 molecule is 
described well. (ii) The bond-stretching force, - 0  V~nt/Or, evaluated at r = re, where 
Vi,~t is the interaction energy of He and Ia, r is the distance between the two I 
atoms, and re is the equilibrium value of r, should be well converged with respect 
to changing the basis set. (iii) The calculated equilibrium structure of  the HeI2 
van der Waals (vdW) complex should agree reasonably well with the experi- 
mentally determined structure [19, 20]. In particular, for (iii), we required that 
the potential well of  the bent or T-shaped HeI2 complex should be deeper than 
or at least comparable to that of the collinear complex since the prevailing 
interpretation of the experimental data supports a vibrationally averaged non- 
linear structure for the vibrational ground state [19]. 

For I, we begin with an sp basis set, which is listed in Table 2, from Wadt and 
Hay [13]. In order that the computed value of re for 12 reproduce the experimental 
value of 5.039 ao [21], one set of nuclear-centered d-type functions was added 
at each I, and one s-type and one set of  p-type functions were added at the bond 
center. The exponential parameters for the d functions and the bond-centered 
functions were chosen to reproduce re within 0.015 ao at the MR CISD level and 
are also given in Table 2. The final basis yields re = 5.054 ao. In addition it yields 
a harmonic stretching frequency of 220.0 cm -1, as compared to the experimental 
value [21] of  214.5 cm -1. 

Table 2. Gaussian basis set [3s3pld/lslp/4s2p] used in present 
calculations 

Exponential Contraction 
Center Symmetry parameter (a.u.) coefficient a 

I s 0.7242 1.0 
I s 0.4653 1.0 
I s 0.1336 1.0 
I p 1.2900 1.0 
I p 0.3180 1.0 
I p 0.1053 1.0 
I d 0.275 1.0 
B b s 0.52 1.0 
B b p 0.52 1.0 

He s 414.46650 0.001272 
62.24915 0.009712 
14.22123 0.047271 
4.038781 0.158146 

He s 1.297177 1.0 
He s 0.44753 1.0 
He s 0.160274 1.0 
He p 1.3 1.0 
He p 0.25 1.0 

a Coefficient of primitive basis function. 
b B denotes bond midpoint of 12. 
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The s basis set for He is taken from Huzinaga [22] and is one of the bases 
employed by Meyer et al. [23] in their study of Hell2. Two sets of  p-type 
polarization functions are added to the He s basis. We found that the interaction 
energy in the vdW well region is quite sensitive to the choice of exponential 
parameter of  the diffuse p set. In particular the interaction energy varies by 300% 
when the exponential parameter of the diffuse p function on He is varied in the 
range 0.1-0.5 a.u.. In contrast the same interaction energy is quite insensitive to 
the exponential parameter chosen for the tighter p function. Thus the tight p 
exponential parameter was optimized in a configuration interaction calculation 
(all single and double excitations from a single-configuration Hartree-Fock 
reference, which, for He, corresponds to a full CI calculation in the given 
one-electron basis) on atomic He; this yields 1.3 a.u.. Ideally the diffuse p 
exponential parameter would be chosen to optimize the electronic energy of the 
vdW complex. However a converged calculation of the vdW binding energy and 
geometry would require an extremely well balanced treatment of correlation 
errors in the complex and the separated subsystems and is probably beyond the 
state of the art. Thus we settled for a more empirical approach in which the 
diffuse p exponential parameter was chosen to make the calculated geometry 
(Re, which denotes the distance from the center of mass of 12 to He at the local 
minimum) and binding energy (De) of the T-shaped vdW complex close to the 
estimated values of Ref. [3] and to insure that the calculated binding energy of 
the linear vdW complex is not significantly greater. By trial and error we thus 
settled on a diffuse p exponential parameter of 0.25 a.u., which yields Re = 7.82 
ao and De = 2.69 meV for the T-shaped complex and  Re = 9.94 ao and De = 
2.78 meV for the linear one, with a saddle point between these local minima. 
Thus the collinear complex is calculated to be more stable than the perpendicular 
complex by only 0.09 meV. 

Admittedly, as discussed above, we have not converged the potential surface in 
the region of the vdW well with respect to the basis set; however, the goal of the 
present calculations is the creation of a potential surface that is useful for He + 12 
scattering calculations at relative translational energies much greater than the 
vdW well depth, and such calculations are primarily sensitive to the repulsive 
wall of the potential and the bond-stretching force at geometries corresponding 
to highly repulsive interactions [4]. Thus we think that any reasonable description 
of the vdW well is adequate for the present purposes. 

Table 3 reports a special set of calculations designed to illustrate the degree of 
basis-set independence of the bond-stretching force (-O Vint/Or ) at  energies near 
0.1 eV, which is the energy for which scattering calculations are reported in 
Section 4. For completeness, Table 3 also shows some of the results for Vin t in 
the vdW region. Since the 12 basis set is chosen to make re correct for isolated 
I2, Table 3 only shows the sensitivity of Vin t and -0  Vim~Or to the He basis. For 
this table, for a given value of R, the magnitude of the vector/~ from the center 
of mass of I2 to He, and X, the angle between the I2 axis and/~, and r, the distance 
between the two I atoms, the force is obtained by calculating Vin t a t  r-~-4.854,  
5.054, and 5.254 ao, fitting it to a parabola, and analytically evaluating the 
derivative at r = 5.054 ao. 
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Table 3. Dependence of the interaction potential (V~t) and the bond-stretching force 
(-OVint/ar) on the He basis set 
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p basis Vi m -0 Vim~Or 
s basis a al(a.u. ) a2(a.u. ) R (ao) (meV) b (meV/ao) 

perpendicular HeI 2 (X = 90 ~ 
1 1.3 0.10 5.0 c 120.5 20.1 
1 1.3 0.25 5.0 117.8 17.4 
1 1.3 0.50 5.0 130.2 19.3 
1 1.3 0.10 8.0 d -5.33 - -  
1 1.3 0.25 8.0 -2.67 - -  
1 1.3 0.50 8.0 -1.77 - -  
1 1.5 0.25 8.0 d -2.67 - -  
1 1.3 0.25 8.0 -2.67 - -  
1 1.0 0.25 8.0 -2.69 - -  

collinear HeI 2 (X = 0~ 
1 1.3 0.10 7.5 c 105.6 - 111.3 
1 1.3 0.25 7.5 100.4 - 103.3 
1 1.3 0.50 7.5 106.9 -106.1 
1 1.5 0.25 7.5 c 100.1 -103.1 
1 1.3 0.25 7.5 100.4 -103.3 
1 1.0 0.25 7.5 100.1 -103.5 
1 1.3 0.25 7.5 c 100.4 -103.3 
2 1.3 0.25 7.5 99.0 - 103.2 

a See text for definition of s basis sets. 
b Vint is defined as the difference between the potential energy at a given I-I distance 
r, I2-He distance R, and orientation angle ~ (the angle between the I2 axis and the 
vector from the center of 12 to He) and the potential energy at the same r and g with 
R = 20.0 ao. The value of r is 5.054 a o for all entries in this table. 

Repulsive wall region of the potential energy surface. 
d vdW well region of the potential energy surface. 

Fi rs t  c o n s i d e r  the  s bas is  a n d  the  e x p o n e n t i a l  p a r a m e t e r  o f  the  t igh t  p set  on  He.  

T h e  s bas is  was  v a r i e d  by  r e p l a c i n g  the  s bas is  o f  T a b l e  2 by  the  311 bas is  o f  

P o p l e  et al. [24]  a u g m e n t e d  by  a di f fuse  s f u n c t i o n  wi th  an  e x p o n e n t i a l  p a r a m e t e r  

o f  0.08 a.u. I n  T a b l e  3, t he  s bas is  o f  T a b l e  2 is ca l l ed  bas is  1 a n d  the  a u g m e n t e d  

311 bas is  is c a l l ed  bas is  2. T h e  t igh t  p set  o n  H e  was  v a r i e d  by  s i m p l y  c h a n g i n g  

the  e x p o n e n t i a l  p a r a m e t e r ,  ca l l ed  of I in T a b l e  3. T a b l e  3 shows  tha t  - a  Vint/Or is 

v e r y  i n s e n s i t i v e  to  c h a n g e s  in these  a spec t s  o f  the  bas is  set. N e x t  c o n s i d e r  t he  

v a r i a t i o n  o f  t he  e x p o n e n t i a l  p a r a m e t e r ,  c a l l ed  a2 in T a b l e  3, o f  t he  d i f fuse  p set  

on  He .  T a b l e  3 s h o w s  tha t  the  b o n d - s t r e t c h i n g  fo rces  v a r y  by  16% or  less w h e n  

the  e x p o n e n t i a l  p a r a m e t e r  o f  t he  di f fuse  p set  on  H e  is v a r i e d  by  a f a c t o r  o f  5, 

e v e n  t h o u g h  V~nt o f  the  T - s h a p e d - c o m p l e x ,  w i t h  a f ixed  R n e a r  t he  v d W  m i n i m u m ,  

var ies  by  a f a c t o r  o f  3.0 ( 1.77- 5.33 meV)  fo r  t he  s a m e  e x p o n e n t i a l - p a r a m e t e r  range .  

W e  c o n c l u d e  f r o m  the  d i s c u s s i o n s  a b o v e  tha t  t he  bas is  set  g i v e n  in T a b l e  2 

sat isf ies t he  t h r ee  c r i t e r i a  e s t a b l i s h e d  at t he  b e g i n n i n g  o f  this  sec t ion .  Thus ,  this  

bas is  set  was  u s e d  in t he  M R  C 1 S D  ca l cu l a t i ons .  
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In  ac tua l ly  p e r f o r m i n g  the  M R  C I D S  ca l cu l a t i ons ,  the  C O L U M B U S  p r o g r a m s  
o n l y  expl ic i t ly  t ake  a d v a n t a g e  o f  the  s y m m e t r y  e l emen t s  o f  the  C2v a n d  Cs p o i n t  
g roups ,  as a p p r o p r i a t e  to the  g iven  HeI2 geomet ry .  F o r  the  bas is  set g iven  in  
Tab l e  2, this  y ie lds  28 218 a n d  53 623 sp in  a n d  s y m m e t r y - a d a p t e d  con f igu ra t i ons  

for  C~ov or  C2v a n d  Cs geomet r i es  respect ively .  

The  f inal  r esu l t  o f  the  ab initio ca l cu l a t i ons  is a set o f  i n t e r a c t i o n  po ten t i a l s ,  

c a l c u l a t e d  as 

Vint(r , R, X) = EneI2( r, R, X) - EneI2( r, R = 20 ao, X) 

where  Er~ei2 is the  to ta l  c a l c u l a t e d  ene rgy  at  a g iven  g e o m e t r y  (r, R, X) where  r 
is the  d i a t o m  v i b r a t i o n a l  s epa ra t i on ,  R is the  m a g n i t u d e  o f  the  vec to r  /~ f rom 

Table 4. MR CISD interaction energies on HeI2 potential energy surface a 

Vi~ t (r = 4.854 ao) Vin t (r = 5.054 ao) Vin t (r = 5.254 ao) 
R (ao) (meV) (meV) (meV) 

perpendicular HeI2 (X = 90 ~ 
3.0 2.79 (3) b 2.59 (3) 2.39 (3) 
4.0 6.65 (2) 6.31 (2) 5.95 (2) 
5.0 1.21 (2) 1.18 (2) 1.14 (2) 
6.0 1.15 (1) 1.23 (1) 1.27 (1) 
7.0 -2.61 -2.20 - 1.93 
7.5 -2.99 -2.83 -2.78 
8.0 -2.67 -2.67 -2.67 
8.5 -2.15 -2.18 -2.23 
9.0 - 1.16 -1.63 - 1.66 
9.5 -1.14 -1.14 -1.17 

10.0 -0.76 -0.76 -0.79 
10.5 -0.52 -0.52 -0.52 
11.0 -0.35 -0.35 -0.35 
12.0 -0.19 -0.19 -0.19 
13.0 -0.11 -0.11 -0.11 
20.0 0.00 0.00 0.00 

collinear HeI 2 (X=0 ~ 
3.0 5.10 (5) 6.54 (5) 8.71 (5) 
4.0 5.06 (4) 6.34 (4) 7.96 (4) 
5.0 7.16 (3) 8.58 (3) 9.58 (3) 
6.0 1.42 (3) 1.64 (3) 1.89 (3) 
7.0 2.31 (2) 2.76 (2) 3.30 (2) 
7.5 8.17 (1) 1.00 (2) 1.23 (2) 
8.0 2.39 (1) 3.11 (1) 4.00 (1) 
8.5 3.51 6.01 9.20 
9.0 -2.39 -1.71 -0.79 
9.5 -3.27 -3.18 -3.05 

10.0 -2.69 -2.78 -2.86 
10.5 -1.96 -2.04 -2.15 
11.0 -1.36 -1.44 -1.55 
12.0 -0.68 -0.71 -0.76 
13.0 -0.33 -0.35 -0.38 
20.0 0.00 0.00 0.00 
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Table 4. (cont.) 
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Vim (r=4.854 ao) Vi. t (r=5.054 ao) Vin t (r=5.254 ao) 
R (%) (meV) (meV) (meV) 

bent HeI 2 with X=45 ~ 
3.0 1.75 (4) 1.65 (4) 1.54 (4) 
4.0 8.09 (3) 8.04 (3) 7.61 (3) 
5.0 2.25 (3) 2.36 (3) 2.46 (3) 
6.0 5.01 (2) 5.37 (2) 5.73 (2) 
7.0 9.07 (1) 9.93 (1) 1.08 (2) 
7.5 3.45 (1) 3.84 (1) 4.25 (1) 
8.0 1.13 (1) 1.30 (1) 1.47 (1) 
8.5 2.34 3.05 3.76 
9.0 -0.84 -0.57 -0.30 
9.5 -1.77 -1.69 -1.61 

10.0 -1.77 -1.77 -1.77 
10.5 -1.44 -1.47 -1.50 
l l .0  -1.03 -1.06 -1.12 
12.0 -0.46 -0.46 -0.49 
13.0 -0.22 -0.22 -0.22 
20.0 0.00 0.00 0.00 

a Vint ' r, R~ and X are defined in footnote b of Table 3. 
b Numbers in parentheses are multiplicative powers of  ten. 

the center of the 12 moiety to He, and g is the angle between the 12 axis and/~. 
These interaction energies are given in Table 4. 

Figure 1 compares the present calculations for the perpendicular bisector 
approach to those of Ref. [3]. The figure shows large differences in the vdW well 
region and hence in the outer, bottom reaches of the repulsive wall. The region 
most important for the vibrational excitation experiments of Ref. [1] is estimated 

Fig. 1. Interaction potential for the He-I2 in the perpen- 
dicular bisector geometry with r = r e. The curves are the 
ab initio calculations of Ref. [3] and the present paper. 
The circles, given at 1.0 ao intervals from 3.5 to 10.5 ao, 
are the final partly empirical analytic potential of Ref. 
[3]. Notice that, as is usual for this kind of plot, the 
ordinate scale is linear near the bottom and logarithmic 
near the top 

5O > 

5000 ' I ' [ ' I ~ _ 

500 ~ 5.054? I R 

( ~ -  small-basis 

---- la~9~_bosi~/\'\ 
CI 

_ , I L I r I , 
5 7 9 11 

R(a o) 

1ooo 

lOO 

lO 

1 

-1 



32 F. B. Brown, D. W. Schwenke and D. G. Truhlar 

to be where the potential is about 40-450meV. Figure 1 shows much better 
convergence in that range and absolutely excellent agreement at even shorter 
range where the interaction potential exceeds 500 meV. Since the two sets of 
calculations are based on different ECP's and different methods of including 
electron correlation, this good agreement gives us added confidence in both these 
aspects of  the calculation. In Ref. [3] we recognized the incomplete convergence 
of the calculations in the vdW region and created an analytic potential over the 
whole range by combining the ab initio data for the repulsive wall with dispersion- 
force estimates for the long-range potential and empirical estimates for the well 
region. Some values calculated from the analytic representation so obtained are 
also shown in Fig. 1, and we see that they are in better agreement with the present 
calculations. (It is particularly encouraging that the long-range tail of  the present 
calculations agrees so well with the previous empirical estimates.) The strategy 
of the present paper is different from that of Ref. [3]. In the present case we 
have improved the calculation enough so that it is more likely to be adequate in 
the vdW region and we have adjusted the exponential parameter of the diffuse 
p function on He so that the vdW well depth and location are approximately 
correct, and in fact are in about as good agreement with the best available 
experimental estimates as we were able to achieve in the previous study. We 
believe that this will yield at least as accurate a potential in the region where it 
first becomes repulsive, e.g. the region between 6 and 7ao in Fig. 1. Now we will 
fit the ab initio data directly without combining it with extra information. A 
second difference between the new and previous calculations is that the new ones 
are not restricted to one orientation angle and one vibrational displacement. Thus 
the ab initio data themselves predict the dependence of Win t o n  r and X, whereas 
in the previous study the r and X dependence were consequences of the pairwise 
additive assumption. The next section presents the present non-pairwise-additive 
representation. 

3. Analytic representation of the potential 

For scattering calculations we represent the total potential energy as 

V(r, R,X)= V~nt(r, R,X)+ Vi~(r) (1) 

where V~nt is an analytic representation of the calculated interaction potentials 
and VI2 is a Morse, given in Ref. [3], curve calculated from the parameters 
tabulated by Huber and Herzberg [21]. In the rest of  this section we consider 
several ways to represent Vint. One common method to represent Vlnt is to expand 
it in terms of  Legendre polynomials; thus for He-I2 we would write 

Vint(r , R, X)=~  ~(r, R)Px (cos X)- (2a) 

If  one also takes 

~(r, R)=~ c~j(R)[(r-re)/r] j, (2b) 
J 
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or some other similar expansion for the r coordinate, and fits the cxj to spline 
functions, the fitting procedure is quite easy. Note that for the vibrational- 
coordinate expansion in Eq. (2b), we used the variable ( r - r e ) / r ,  as proposed 
by Simons, Parr, and Finlan [25], Since a power series in this variable has better 
behavior at large r than a power series in ( r - r e ) .  One problem with Eqs. (2a) 
and (2b) is that the Legendre expansion tends to converge very slowly and hence 
one needs to calculate the interaction potential at a large number of angles to 
determine the large number of expansion coefficients required to represent the 
angular dependence for nonspherical molecules. In particular, it is not possible 
to represent the infinity, when two atoms overlap, simultaneously with other 
regions with a finite number of terms in Eq. (2a). An advantage of this procedure 
though is that it can exactly reproduce the input ab initio data. 

Another method we considered to represent the interaction potential is 

Vint(r, R , X ) =  VPnAt(r, R~X)+ vNPA(r, R,X) ,  (3) 

where V PA is a pairwise additive term: 

PA Vint (r, R, X)= VP(R1) + vP(g2), (4) 

where Rj is the distance from the atom to the j th  atom in the diatom, and V NPA 
is a non-pairwise-additive correction term. Usually some functional form contain- 
ing parameters is used for V P, and V s P A  is neglected. The parameters are then 
adjusted to best fit the ab initio data. This procedure can involve many arbitrary 
options since the parameters in V P are usually nonlinear. This method has the 
advantage that it can describe highly anisotropic interactions, but it does not 
reproduce exactly the input ab initio data. 

We may consider various modifications to the above procedures. One problem 
with using Eq. (3) is in defining V P so it does describe the bulk of the interaction 
energy in a physical way. We will define our V P by requiring 

Vint(r = re, R~ X = "/7"/2) -- vPA(re, R, X = ~r/2) 

= 2 vP[(0.25 r 2 + R2)1/2]. (5) 

I.e. we define V P as that function which reproduces the ab initio data for T-shaped 
geometries with 12 at its equilibrium distance. This gives V r' on a grid, and we 
define it everywhere by using 

Aexp ( - b x ) / x  x < x 2  

VP(x) = Jcubic spline x2<-x<_x. (6) 
! 

~ - C 6  X-6 X'~ X n 

where x~ is a grid point ordered so that x~ ~ xj if and only if i _<j. The constants 
A and b are chosen to reproduce the grid values VP(Xl) and VP(x2), and C6 is 
given by - x  6 VP(x.), where x. is the largest grid point. The cubic spline has 
continuous first derivatives across x2 and x.. 
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One possible method uses Eq. (3) with V PA defined by Eqs. (4), (5), and (6), 
and V Nag defined by 

vNPA(r ,  R~ X)  = Vint(r, R ,  X)  - PA Vint (r, R, X) (7) 

and represented by functions like those in Eqs. (2). This procedure exactly 
reproduces the ab initio data when splines are used for the coefficients cxi, and 
is quite simple to perform; but we found for He-I2 that the Legendre expansion 
for V NPA converges slowly. This method may work better for diatoms with smaller 
equilibrium bond distances, but we will not consider it further here. 

After experimenting with various ways to improve on the above schemes we 
finally settled on the following method, which involves switching between the 

Vim(r, R,X), defined by Eqs. (4)-(6), and a small- pairwise additive potential PA 
vibration-amplitude potential vSVA(r, R, X) as follows 

Vint(r, R,X) SVA - s ( r ) ] V i n t ( r  , R , X  ) (8)  =s(r) Vint (r, R,X)+[1 PA 

where 

s(r) = sech [a(r -  re)]. (9) 

This switching procedure is similar to that employed previously [6b] for an ArH2 
surface. The small-vibration-amplitude potential is then defined by 

Y rSVA z PA 
X)[ Vint (r, R, X) + e] - e vint tr, R, X) =fc( r, R, (10) 

where fc is given by 

f~(r, R, X) = [ Vint(r, R~ X)d- E][ vPA(r, R, X) + e l - '  (11) 

and e is a small number chosen so that the numerator and denominator are 
positive everywhere. If e is large enough, the final potential energy surface is not 
very sensitive to its exact value, and we use e equal to minus five times the most 
negative Vin t of any of the ab initio points; this yields e = 16.35 meV. This 
procedure gives f~ on a grid of r, R and X. We determine it everywhere by using 

f~( r, R, X) = ~ {~ C~,( R )[ ( r -  re)/ r]'} P~ (cos x) (12) 

and 

Cx,( R,) R <- R, 

Cx~(R) = ~cubic spline R1 < R < Rn+l (13) 
/ 
( ~xo~io R - Rn+l 

where R1 is the smallest distance at which Cx~ is known, and R,+I is 2Rn - R,_j, 
where Rn and R,_1 are the largest distances at which the C~ are known. The 
cubic splice is constrained to have zero first derivatives at R1 and R,+I. Note 
that Coo(R) is always positive and if desired one could have spline fit In Coo(R) 
rather than Coo(R). 
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This small-vibration-amplitude potential itself, i.e. the above procedure with 
s(r) = 1, works quite well for interpolating and extrapolating in the R and X 
coordinates, but has problems extrapolating for large deviations of  r from re. 
Only the region of r sampled classically by I2 in its lower vibrational states (v -< 4, 
v being the vibrational quantum number) is well represented. The reason we 
used a switching procedure is to avoid problems for higher vibrational quanta. 
We used ~ equal to 0.6 ao 1, for which the r dependence is well behaved at least 
to the region sampled classically if 12 has v --- 80, which is the range of 4.3 to 7.4 ao. 

For even better global fits one should replace vPA(r, R, X) in Eq. (8) by the true 
pair potential and vPA(r, R,X) in Eqs. (10) and (11) by a pair potential that 
better reproduces the ab initio data in an average sense, rather than just at X = 90 ~ 
These refinements were not judged necessary for the present work. 

Using the above fitting procedure, it is quite easy to assess the convergence of 
the analytic representation with respect to the number of angles X and bond 
displacements used. Figure 2 shows a test of the convergence of the force on the 
I2 bond as a function o f x  when various numbers of  angles and bond displacements 
are used. The force is evaluated at r =re and R equal to the classical turning 
point when the asymptotic translational energy is 86.7 meV and ~, the orbital 
angular momentum, is zero. The figure shows that the pairwise additive potential 
of Ref. [3] gives a very similar curve as the present pairwise additive potential. 
Thus the main difference between the present and previous results is due to the 
more extensive set of  geometries calculated in the present work, as opposed to 
the methods used for the electronic structure calculations. The main difference 
between using the pairwise additive potential and the final potential defined by 
Eq. (8) using all of the ab initio data (3 angles and 3 bond displacements) occurs 

Fig. 2. The force on the 12 bond at r =re and R 

equals the classical turning point for e = 0 a t  a given 
2(. Several of  the curves are labelled na, n~ where 
na is the number of angles (i.e. the number of A 

values) used, and n i is the number of 12 bond o 
displacements (i.e. the number of i values) used. "~ 

The solid curve is for the pairwise additive potential 
I 

of the present paper, and it is indistinguishable o 
from the potential calculated using 3 angles and 1 

vibrational displacement. The long-dashed curve > 

is for 3 angles and 3 vibrational displacements, the 
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Fig. 3. The same as Fig. 2 except ~ = 30 and only 
-3 i t I i i I ~ i the final analytic representation of this paper and 50 60 90 

X(deg) the analytic representation of Ref. [3] are shown 

for X greater than about 50 ~ The potential obtained using all bond displacements 
but only 0 and 90 ~ [i.e. h =0,  2 in Eq. (12)], differs most from that using all of 
the ab initio data in the range of 30 to 80 degrees. The main effect of adding the 
45 ~ data to the fit is to bring the curve very close to the curve using only VintPA. 
Thus, we conclude that in the range 0 to 50 ~ the anisotropy of the potential is 
well converged. If only 90 ~ data is used in the fit, the resulting force is similar 
to that using 0 and 90 ~ and for X less than 25 ~ and greater than 80 ~ it agrees 
well with the fit using all of the ab initio data. If the number of vibrational 
displacements used is decreased to two while all three angles are used, the force 
is very similar to that obtained from the fit using all of the ab initio data; thus 
the vibrational dependence of the potential seems reasonably well converged. If 
only one vibrational displacement is used, but all three angles are used, the force 

Vint, and hence this force is extremely close to the force obtained using only PA 
curve is not shown in Fig. 2. In conclusion, to represent the surface accurately, 
it appears for this system that at least two bond displacements are required, and 
three (or more) angles are necessary. Figure 3 shows the forces for g = 30 using 
the current potential and the potential of Ref. [3]. 

4. Scattering calculations 

We carried out scattering calculations using the new potential energy surface 
described in the previous section. The dynamics were treated using the vibrational 
close-coupling, rotational infinite-order-sudden approximation (VCC/IOS). The 
calculations are for a total energy of 0.1 eV, which corresponds to a relative 
translational energy of 0.0867 eV when the initial state is the vibrational-rotational 
ground state. 

The close-coupling equations were solved by R matrix propagation, for 17 evenly 
spaced X in the range 0 to ~r/2. The vibrational-state expansion of the wave 
function was truncated to the five lowest vibrational channels for g less than 72 
and to only the lowest vibrational state for s in the range 72 to 91. The vibrational 
matrix elements were calculated using an optimized quadrature scheme employing 
Gauss-ground-state nodes [26]. We found that 6-point quadrature was sufficient 
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to converge the final T matrix elements to better than 1%, providing another 
confirmation of  the efficiency of  this scheme as reported previously [26]. The 
other integration parameters  used and the number  of  coupled channels were 
sufficient to converge the significant T matrix elements to better than 1%. In 
order to calculate the vibrationally elastic cross sections, we augmented the large 
g phase shifts with ones calculated using the Born approximation for the phase 
shift [27] with the long-range form of the potential for each X, i.e. V~nt---- 
-C6(R16+R26). At /?=91, the Born phase shifts, as compared to the close 
coupling ones, are 14% too small at X = 0~ and 10% too large at X = ~'/2. (The 
accurate phase shifts vary from 6.0 • 10 -2 at X = 0 ~ to 2.85 • 10 -2 at X = 90 ~ for 
this g.) The Born phase shifts were calculated up to g = 120. 

These procedures,  with the exception of the method we used to calculate the 
vibrational matrix elements and the large-g phase shifts, are the same as previously 
reported [4]. We also use the methods of  Ref. [4] to calculate the rotational 
state-to-state cross sections. 

5. Results and discussion 

Table 5 shows the calculated integral cross sections as a function of  the final 
rotational state j '  for the first three even rotational states for final vibrational 
quantum number  v ' =  0 and the first sixteen for v'---1. These cross sections are 
denoted o-~,j, which is the integral cross section for the transition from the initial 
state v = 0, j = 0 (the vibrational-rotational ground state) to the final state with 

Table 5. State-to-state and rotationally summed  cross sections 
at relative translational energy Efe~=0.087 eV for initial state 
v = 0 , j = 0  and final state v ' , j '  

J' ~o,=o,/(a~) ~o,=,,f(a~) 

0 239 0.0880 
2 43,4 0.285 
4 23.0 0.189 
6 0.0524 
8 0.0351 

10 0.0593 
12 0.0525 
14 0.0330 
16 0.0252 
18 0.0232 
20 0.0188 
22 0.0146 
24 0.0124 
26 0,0111 
28 0.00994 
30 0.00894 

~o(a~) ~,(a~) 
Sum of  a l l j '  438 0.941 
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vibrational quanta v' and rotational quanta j ' .  (All of the results quoted in this 
paper are for the initial state having v = 0 and j = 0.) The vibrationally inelastic 
cross sections have a maximum as a function o f j '  at j ' =  2 as compared to j ' =  16 
from our previous calculations [4] and Aj ~ 5 from the experiments of Ref. [1]. 
Thus the new potential significantly improves the agreement with experiment for 
this quantity. The vibrationally elastic cross sections are more similar to those 
obtained in our previous calculations. The other quantity which we can directly 
compare to experiment is the ratio 

O ' v ' = l , j '  e 
O'0v' j'~<4 

- ( 1 4 )  
~a E o-o,=o,j,+ ~ E oo,j, 

j'-->6 a l ly  v'>O 

This is the quantity that the experiments of Hall et al. [1] would give, with the 
numerator as a function of energy and the demoninator evaluated at a relative 
translational energy of  0.4 eV, if all the collision partners for the events they 
observe had j = 0 and if the laser bandwidth were a step function with its most 
probable bandwidth. For the present comparison we neglect the initial j depen- 
dence. Hall et al. observed that the denominator did not have strong energy 
dependence; thus we will evaluate this ratio using only our 0.0867 eV data. Our 
previous calculations [4] also showed that the denominator was approximately 
energy independent;  in particular the value of the demoninator at 0.0867 eV 
differed from the interpolated value at 0.400 eV by only 1.3%. Our previous result 
for the ratio in Eq. (14) was 0.48 x 10 -3, which is about a factor of two smaller 
than the final [1] experimental result of  0.8 x 10 -3, while our new calculations 
give 4.2 x 10 -3, which is about a factor of five too high. We will consider three 
possible reasons why we predict too high a ratio. The first is that the theoretical 
results must be averaged over initial j states, which experimentally correspond 
to a 1-2K distribution rather than all j = 0 assumed here, and over the laser 
intensity distribution, which determines which j '  states are included. Such a 
complete simulation of  the experiment is beyond the scope of this work (since 
it would require both more extensive quantum mechanical calculations and a 
better characterization of the experimental conditions). A second possible source 
of  the disagreement of theory and experiment is that the theoretical j '  distribution 
is shifted to slightly too small j '  for v '=  1. If  the maximum would occur at slightly 
larger j ' ,  then the numerator in Eq. (14) would be reduced. The regions of the 
potential which are probably most responsible for the error in the j '  distribution 
are those corresponding to X = 10 -40~ because, as we shall see below, this is 
where most of  the vibrational excitation occurs, and also those corresponding to 
g = 60-90~ since this is where the vibrational force appears least well converged 

Vint. A third possible reason for the and differs the most from just using PA 
disagreement of the ratio in Eq. (14) with experiment is the overall magnitude 
of the vibrational force. To the extent that the vibrational force is uniformly 
overestimated at all X one would expect a similarj '  distribution to the experimental 
one but a decrease in the cross section summed over j ' .  If this were the main 
cause for the overestimate of the ratio in Eq. (14), then, based on the correlation 
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of  the force with the inelastic probabilities as discussed in the next paragraph,  
it would require a change in the force much greater than the variations with basis 
set observed in Table 3. It would be interesting to test the sensitivity of  the 
vibrational force to more variations in the basis set, such as the iodine basis, and 
the method by which electron correlation is included. Such tests would be difficult 
to interpret, however, if the basis set and CI  variations also make a significant 
difference in the calculated values of  re and oJe for isolated I2. It is important  to 
emphasize though that the ratio of  Eq. (14) is much more sensitive to small 
changes in the vibrational force when these are not in the same ratio at all 
orientation angles. Thus the ratio of  Eq. (14) is overall much more sensitive to 
the quality of  the potential than are the totally rotationally summed cross sections 
~rv,. For the present surface, or1 is only 25% larger than for the pairwise-additive 
surface, and O'o is only 5% smaller�9 Thus, the second reason mentioned above 
appears  more important  than the third, and we conclude that, in interpreting the 
disagreement with experiment in Ref. [4], we were right to emphasize the distribu- 
tion of  v ' =  1 states over j ' .  

In Ref. [4] we showed that, for a pairwise-additive potential energy surface, the 
probabili ty of  v ' =  1 vibrational excitation in a collision at a given X and with a 
given s was almost proport ional  to the square of  the vibrational force evaluated 
at r = re at the classical turning point of  R for the given g and g. Two questions 
that arise are: (i) does this almost linear relation continue to exist for a non- 
pairwise-additive potential, such as the present one, and (ii) is the proportionality 
constant the same for the two surfaces or is it a function of  overall global surface 
shape? Fig. 4 shows a plot, for all angles X at which we performed VCC/ IOS  
calculations, of  the probability, Peol(g) , of  vibrational excitation (v = 0 to v ' =  1) 
as a function of the square of  the force -OV/Or ,  evaluated for a given X with 
r = re and R equal to the classical turning point, i.e. at the root of  

E r e , - g ( g +  1)/(2/~R 2) - Viint (r ,  R, X) = 0  (15) 

where Ere~ is the translational energy of 0,0867 eV. As we observed in Ref. [4], 
this plot is almost linear. The present calculations give a slope of  about  6.8 x 
103 a.u. which is very close to the value calculated previously, about 6.4 • 103 a.u. ; 
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Fig. 4. The probability for vibrational exci- 
tation at g and g as a function of the square 
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thus the linear relation persists, and the slope is approximately independent of 
the potential energy surface. This finding is of  great import for future ab initio 
studies. It means that, when the goal is to calculate an interaction potential for 
vibrational excitation calculations, we can concentrate on the vibrational force 
at a given atom-diatom distance in testing convergence of the electronic structure 
calculations rather than having to converge the whole interaction potential with 
less knowledge of which part is most relevant. 

Figure 5 shows some state-to-state differential cross sections for the final vibra- 
tional state v '=  1. These cross sections are backwards peaked, as before [4], but 
they show much less structure than the ones calculated previously [4]. 

Figure 6 shows a plot of o'v,(X) sin X against X for v' = 1. This quantity is related 
to the cross section for exciting the v' = 1 level, summed over allj ' ,  by the equation 

I; try, = �89 tr~,(X) sin X dx. (15) 

The main difference in this figure between the curves for the present potential 
and the pairwise-additive potential of Ref. [3] is the overall scale; the biggest 
difference in shape occurs near 90 ~ where the pairwise-additive potential levels 
to a local maximum about half the height of the maximum at about 25 ~ whereas 
the current potential gives almost zero vibrational excitation there. The vanishing 
of u~,=l (X) sin X for the pairwise-additive potential around 65 ~ in Fig. 6 is directly 
attributable to the zero in the force at this angle in Fig. 2. Similarly the same 
zeroes shift to about 85 ~ in both plots for the present potential, 

Figure 7 shows the opacity as a function of the orbital angular momentum g. 
The opacity is defined here as the probability of vibration excitation averaged 
over X. The results of the current potential are very similar to the results [4] for 
the potential of Ref. [3]. 
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6. Conclusions 

We have reported a new set of extended-basis-set configuration-interaction (CI) 
calculations of  the He-I2 interaction potential in the ground electronic state. The 
calculations include the dependence of  the interaction potential on the I2 orienta- 
tional angle and vibrational displacement. The orbital set used for the CI calcula- 
tions is based on a two-configuration SCF calculation that shows proper dissoci- 
ation in order to avoid the deficiencies of the restricted and unrestricted single- 
configuration methods as a bond is stretched. The calculations include up to 
53 623 configurations and are designed to be as accurate as possible for the force 
along the 12 vibrational coordinate at the He-I2 classical turning point distances 
of collisions with relative translation energies in the range 50 meV and higher, 
which is the range of the first available experimental study of  vibrational excitation 
probabilities as a function of  collision energy in a neutral system. 
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We have developed a straightforward method for the analytic representation of 
interaction potentials for nonreactive collisions of atoms with rotating-vibrating 
diatoms. The new functional form exactly reproduces all the ab initio data at an 
unlimited set of orientational angles and vibrational displacements, but it does 
not suffer from the slow convergence of simply expanding the orientation-angle 
dependence in a Legendre series or from the positive and negative divergences 
of simply expanding the vibrational-displacement dependence in a power series. 
One crucial ingredient in the new method is that it builds in the pairwise-additive 
term, which would require an infinite Legendre series to expand. The vibrational- 
displacement dependence is handled in the local vicinity of the equilibrium 
diatom separation by a Simons-Parr-Finlan expansion and is treated globally 
by switching to a pairwise-additive approximation when the magnitude of the 
vibrational displacement is large. 

We find that the corrections to the pairwise-additive approximation are very 
important for He-I2, especially for the vibrational force in highly bent and 
perpendicular-bisector approach geometries. It is found to be necessary to perform 
ab initio calculations for at least three approach angles and for at least two 
vibrational displacements. 

We performed converged vibrational-close-coupling, infinite-order-sudden-rota- 
tion dynamics calculations for the state-to-state cross sections He + 
12 (v = 0, j = 0) - He + 12(v'= 0 and 1, j ' =  0 to 30 or summed). The probability of 
vibrational excitation at a given orientation angle and orbital angular momentum 
of relative translation is found to correlate almost linearly with the square of the 
vibrational force at the equilibrium I2 distance and the classical turning point of 
the He-12 coordinate. Furthermore the proportionality constant depends only 
slightly on the global form of the potential energy surface. This provides guidance 
for future ab initio calculations because it shows what aspect of the potential 
energy surface is important to converge. 

The most important geometries for vibrational excitation in the present case are 
found to be those with He off the 12 axis by about 10-40 ~ . The excitation 
probabilities in this range are 30-50% higher than for the pairwise-additive 
potential [3] employed previously [4], but are smaller for orientation angles 
within 17 ~ of the perpendicular bisector. The net result is that the integral cross 
section for excitation of v '= 1, summed over j ', is increased 25%. Although this 
effect is small, the change in shape of the excitation probability, which is clearly 
correlated with the dependence of the vibrational force on orientation angle at 
the turning points, makes a much more dramatic change in the j '  distribution of 
vibrationally excited 12 molecules. We conclude that the experiments of Ref. [1] 
are much more sensitive to the j '  distribution that accompanies v' = 1 than to the 
totally rotationally summed v '= 1 cross section. For a completely satisfactory 
comparison to experiment one would simulate all j and j '  possibilities, but for 
the present work we were satisfied with an interpretation based on j = 0 cross 
sections. 
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Although the new interaction potential is based on state-of-the-art ab initio 
electronic structure calculations and a faithful analytic representation, the 
dynamics calculations using it still do not fully account for recent experimental 
measurements. This is due either to the necessity of using more ab initio data in 
determining the analytic representation of the potential or to deficiencies in the 
ab initio data. In light of the above discussion it would be very interesting to try 
to determine the vibrational force at the classical turning points more accurately 
for the orientation angles that make the biggest contributions, namely those 
differing from collinear by about 20-25 ~ or for the orientation angles where the 
forces are most susceptible to interpolation errors in the present scheme, namely 
orientation angles differing by about 30-35 ~ from perpendicular-bisector 
approaches. 
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